Query Debug Service


Specs

Compiled Query( platonic solid | platonic_solid )
Search Terms Include platonic solid
Search Terms Exclude
Search Terms Advice
Search Terms Priority
Phrase Constraints 2 [platonic, solid] -1896444796 Full[terms=[platonic, solid]]

Results

Platonic solid
https://en.wikipedia.org/wiki/Platonic_solid

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent

dataHash: -5235290218103867498 wordsTotal: 28660 bestPositions: 16086406480920590 rankingScore: 2.787948004692765 urlQuality: -4.5
score
bm25-main: 15.478404824781856
bm25-flags: 12.030360620792072
verbatim: 32.93489456176758
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -5.333333333333333
rankingBonus: 0.0
topologyBonus: 4.927253685157205
temporalBias: 0.0
flagsPenalty: 0.0
doc
docId: 9079259116595288754
combinedId: 2267816368818
7369972919142073489:solid
flags
rawEncoded: 67
Title: true
Subjects: true
UrlPath: true
positions
all: 2,7,291,315,366,410,890,930,1202,1234,1249,1549,1567,1735,1738,1746,1789,1801,1806,1846,1953,2112,2333,2357,2368,2607,2700,2704,2762,2834,2845,2850,2896,3019,4058,4600,4687,4744,4748,4752,4756
title: 2
body: 7,291,315,366,410,890,930,1202,1234,1249,1549,1567,1735,1738,1746,1789,1801,1806,1846,1953,2112,2333,2357,2368,2607,2700,2704,2762,2834,2845,2850,2896,3019,4058,4600
externalLinkText: 4687,4744,4748,4752,4756
verbatim
title: true
body: true
external_linktext: true
-2991778176760378980:platonic
flags
rawEncoded: 7
Title: true
Subjects: true
NamesWords: true
positions
all: 1,6,61,97,147,177,251,314,372,503,561,627,688,779,889,929,984,1190,1392,1548,1685,1745,1800,1836,1872,2111,2186,2252,2356,2367,2569,2606,2672,2699,2703,2761,2833,2982,3003,3087,3208,3235,3283,3579,3585,3615,3630,3714,3809,4018,4037,4044,4221,4238,4256,4453,4507,4538,4599,4653,4686,4691,4697,4703,4707,4711,4715,4719,4723,4727,4731,4735,4739,4743,4747,4751,4755,4764,4768
title: 1
heading: 3714
body: 6,61,97,147,177,251,314,372,503,561,627,688,779,889,929,984,1190,1392,1548,1685,1745,1800,1836,1872,2111,2186,2252,2356,2367,2569,2606,2672,2699,2703,2761,2833,2982,3003,3087,3208,3235,3283,3579,3585,3615,3630,3809,4018,4037,4044,4221,4238,4256,4453,4507,4538,4599,4653
externalLinkText: 4686,4691,4697,4703,4707,4711,4715,4719,4723,4727,4731,4735,4739,4743,4747,4751,4755,4764,4768
verbatim
title: true
body: true
external_linktext: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 2
Subjects: true
verbatim
title: true
body: true
external_linktext: true
Platonic Solid -- from Wolfram MathWorld
https://mathworld.wolfram.com/PlatonicSolid.html

The Platonic solids, also called the regular solids or regular polyhedra, are with equivalent faces composed of congruent There are exactly five such solids (Steinhaus 1999, pp. 252-256 the and as was proved by Euclid in the last proposition of the The Pl

dataHash: -3325905676599594074 wordsTotal: 11600 bestPositions: 137678028806 rankingScore: 3.2292454006458304 urlQuality: -10.91487979888916
score
bm25-main: 12.597081131107704
bm25-flags: 9.974109502514661
verbatim: 32.662960052490234
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -13.333333333333332
rankingBonus: 2.08
topologyBonus: 4.02535169073515
temporalBias: 0.0
flagsPenalty: -5.0
doc
docId: 1585272347818984038
combinedId: 5278984569446
7369972919142073489:solid
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 2,7,388,446,476,483,487,494,545,546,573,593,626,653,656,691,699,732,735,739,1277,1403,1440,1444
title: 2
heading: 7
body: 388,446,476,483,487,494,545,546,573,593,626,653,656,691,699,732,735,739,1277,1403
externalLinkText: 1440,1444
verbatim
title: true
heading: true
body: true
external_linktext: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,6,9,51,73,79,173,324,335,414,418,486,539,591,615,652,690,724,731,738,860,936,953,1071,1109,1136,1155,1290,1344,1402,1424,1428,1432,1439,1443
title: 1
heading: 6
body: 9,51,73,79,173,324,335,414,418,486,539,591,615,652,690,724,731,738,860,936,953,1071,1109,1136,1155,1290,1344,1402
externalLinkText: 1424,1428,1432,1439,1443
verbatim
title: true
heading: true
body: true
external_linktext: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 5
Title: true
NamesWords: true
verbatim
title: true
heading: true
body: true
external_linktext: true
Platonic solid | Platonic Realms
https://platonicrealms.com/index.php/encyclopedia/Platonic-solid

The so-called Platonic Solids are convex regular polyhedra Polyhedra” is a Greek word meaning “many faces There are five of these, and they are characterized by the fact that each face is a regular that is, a straight-sided figure with equal sides and equ

dataHash: -5347878974858570082 wordsTotal: 7110 bestPositions: 524298 rankingScore: 3.361649421417884 urlQuality: -6.191936492919922
score
bm25-main: 10.442434567276996
bm25-flags: 10.059784549468908
verbatim: 19.295835494995117
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -0.4
rankingBonus: 0.0
topologyBonus: 3.912023005428146
temporalBias: 0.0
flagsPenalty: 0.0
doc
docId: 9079271997866770570
combinedId: 15149087850634
7369972919142073489:solid
flags
rawEncoded: 65
Title: true
UrlPath: true
positions
all: 2,10,178,287,389
title: 2
heading: 10
body: 178,287,389
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,3,9,13,112,388,435,529,608,712,747
title: 1,3
heading: 9
body: 13,112,388,435,529,608,712,747
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
heading: true
body: true
Sixth Platonic solid
https://math.stackexchange.com/questions/298937

Sixth Platonic solid A Sixth Platonic solid? [1] Wouldn't gluing a tetrahedron's one triangle to a another tetrahedron's triangle make a platonic solid ? See the picture to see clearly what I mean. Tetrahedron stacked one on each makes an another solid wi

dataHash: -9132024292584529768 wordsTotal: 128 bestPositions: 302 rankingScore: 3.4160097867078405 urlQuality: -10.0
score
bm25-main: 12.986806134770799
bm25-flags: 9.164414906310116
verbatim: 19.80666160583496
proximity: 0.0
firstPosition: 2.886751345948129
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: -2.0
qualityPenalty: -0.6666666666666666
rankingBonus: 1.27
topologyBonus: 0.0
temporalBias: 0.0
flagsPenalty: -2.0
doc
docId: 4611693661791550365
combinedId: 7643364162461
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 3,6,10,26,44,80,92
title: 3
heading: 10
body: 6,26,44,80,92
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 2,5,9,25,79
title: 2
heading: 9
body: 5,25,79
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 0
verbatim
title: true
heading: true
body: true
Platonic Solid
http://utter.chaos.org.uk/~eddy/math/platosolid.html

The platonic solids are regular bounded bodies, with plane surfaces and straight edges, whose faces are all the same, edges are all the same and corners are all the same. So if you've studied the details of one face, one edge and one vertex, you know all

dataHash: -5386164241880419186 wordsTotal: 23452 bestPositions: 4467841826818 rankingScore: 3.500272551978743 urlQuality: -0.28171446919441223
score
bm25-main: 8.458443725794824
bm25-flags: 10.676004297339459
verbatim: 19.988983154296875
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: 0.0
rankingBonus: 0.0
topologyBonus: 1.6094379124341003
temporalBias: 0.0
flagsPenalty: -5.0
doc
docId: 9079518678441001194
combinedId: 261829662081258
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 2,4,471,909,1042,1300,1772
title: 2
heading: 4
body: 471,909,1042,1300,1772
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,3,6,470,908,1169,1299,1771
title: 1
heading: 3
body: 6,470,908,1169,1299,1771
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
heading: true
body: true
Platonic Solid
http://www.chaos.org.uk/~eddy/math/platosolid.html

The platonic solids are regular bounded bodies, with plane surfaces and straight edges, whose faces are all the same, edges are all the same and corners are all the same. So if you've studied the details of one face, one edge and one vertex, you know all

dataHash: -5386164241880419186 wordsTotal: 23452 bestPositions: 4467841826818 rankingScore: 3.524544374459752 urlQuality: -0.28171446919441223
score
bm25-main: 8.617820448598149
bm25-flags: 9.917381953790093
verbatim: 19.988983154296875
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: 0.0
rankingBonus: 0.0
topologyBonus: 1.6094379124341003
temporalBias: 0.0
flagsPenalty: -5.0
doc
docId: 9079295459259842800
combinedId: 38610480922864
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 2,4,471,909,1042,1300,1772
title: 2
heading: 4
body: 471,909,1042,1300,1772
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,3,6,470,908,1169,1299,1771
title: 1
heading: 3
body: 6,470,908,1169,1299,1771
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
heading: true
body: true
Platonic solid - Knowino
https://www.theochem.ru.nl/~pwormer/Knowino/knowino.org/wiki/Platonic_solid.html

The Platonic solids (named after the Greek philosopher are a family of five convex which exhibit a particularly high They can be characterized by the following two properties: All its sides (faces) are regular polygons of the same shape, and the same numb

dataHash: -619099775226989126 wordsTotal: 4122 bestPositions: 1048582 rankingScore: 3.537243420301287 urlQuality: -6.58201789855957
score
bm25-main: 10.657792934954207
bm25-flags: 10.059784549468908
verbatim: 19.583518981933594
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -8.0
rankingBonus: 0.0
topologyBonus: 0.0
temporalBias: 0.0
flagsPenalty: 2.0
doc
docId: 9079290730769286689
combinedId: 33881990366753
7369972919142073489:solid
flags
rawEncoded: 67
Title: true
Subjects: true
UrlPath: true
positions
all: 2,5,419,427
title: 2
heading: 5
body: 419,427
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,4,18,124,205,220,388,418,426,466
title: 1
heading: 4
body: 18,124,205,220,388,418,426,466
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 3
Title: true
Subjects: true
verbatim
title: true
heading: true
body: true
Platonic Solid & Sacred Geometry Essences - Vibrational Essences made from Platonic Solid and Sacred Geometric Shapes
https://www.crystalherbs.com/essences/platonic-solids-essences.asp

The Platonic Solid Sacred Geometry Essences are powerful reminders to our energetic system of their original matrix or blueprint. Working at a subtle energetic level these Essences help to encourage restoration of order and balance within our energetic bl

dataHash: -3077726093753624682 wordsTotal: 10602 bestPositions: 1542466794 rankingScore: 3.561771781987925 urlQuality: -12.905325889587402
score
bm25-main: 12.01805405472006
bm25-flags: 7.589448379090657
verbatim: 22.32793617248535
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -0.8
rankingBonus: 0.0
topologyBonus: 1.9459101490553132
temporalBias: 0.0
flagsPenalty: -10.0
doc
docId: 9079476449584349227
combinedId: 219600805429291
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 2,11,29,42,55,61,102,128,174,416,481,485,525,565,621,640,652,673,780,787,841,956
title: 2,11
heading: 29,42,55,128,481,652,780,841
body: 61,102,174,416,485,525,565,621,640,673,787,956
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,10,28,41,54,60,101,127,173,415,480,484,524,564,620,639,651,672,707,779,786,840,955
title: 1,10
heading: 28,41,54,127,480,651,779,840
body: 60,101,173,415,484,524,564,620,639,672,707,786,955
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 2
Subjects: true
verbatim
title: true
heading: true
body: true
Check if a 3D point lies inside a 3D platonic solid?
https://www.stackoverflow.com/questions/34379859

Check if a 3D point lies inside a 3D platonic solid? Are there any known methods for quickly and efficiently determining if a 3D point lies within a platonic volume of a known size? This seems easy enough to do with a cube (hexahedron) or a circle (ellips

dataHash: -3223299645915240734 wordsTotal: 128 bestPositions: 302006296 rankingScore: 3.6016552205966073 urlQuality: -10.0
score
bm25-main: 14.852806399766468
bm25-flags: 9.96866351712396
verbatim: 14.890371322631836
proximity: 0.0
firstPosition: 1.5075567228888183
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: -2.0
qualityPenalty: -0.6666666666666666
rankingBonus: 0.0
topologyBonus: 0.0
temporalBias: 0.0
flagsPenalty: -2.0
doc
docId: 9079282970711047866
combinedId: 26121932127930
7369972919142073489:solid
flags
rawEncoded: 3
Title: true
Subjects: true
positions
all: 11,22,113,210,213,339,379,654,833,874
title: 11
body: 22,113,210,213,339,379,654,833,874
verbatim
title: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 1
Title: true
positions
all: 10,21,40,209,591,653,832
title: 10
body: 21,40,209,591,653,832
verbatim
title: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 3
Title: true
Subjects: true
verbatim
title: true
body: true
How to design/shape a polyhedron to be nearly spherically symmetrical, but not a platonic solid?
https://math.stackexchange.com/questions/1396485

How to design/shape a polyhedron to be nearly spherically symmetrical, but not a platonic solid? There are only 5 platonic solids, but take a look at these images: How are these things designed? How are they shaped? It looks to me like those hexagons are

dataHash: -2895103826551671625 wordsTotal: 128 bestPositions: 787496 rankingScore: 3.6039364908578526 urlQuality: -10.0
score
bm25-main: 14.688236222929794
bm25-flags: 9.164414906310116
verbatim: 15.04452133178711
proximity: 0.0
firstPosition: 1.2909944487358054
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: -2.0
qualityPenalty: -0.6666666666666666
rankingBonus: 1.27
topologyBonus: 0.0
temporalBias: 0.0
flagsPenalty: -2.0
doc
docId: 4611693661791879796
combinedId: 7643364491892
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 15,30,112,135,341,360,384
title: 15
body: 30,112,135,341,360,384
verbatim
title: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 1
Title: true
positions
all: 14,29,35,111,340,359,383
title: 14
body: 29,35,111,340,359,383
verbatim
title: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 0
verbatim
title: true
body: true