Query Debug Service
Specs
Compiled Query | ( platonic solid | platonic_solid ) |
Search Terms Include | platonic solid |
Search Terms Exclude | |
Search Terms Advice | |
Search Terms Priority | |
Phrase Constraints |
2
[platonic, solid]
-1896444796
Full[terms=[platonic, solid]]
|
Results
Platonic solid
https://en.wikipedia.org/wiki/Platonic_solid
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent
dataHash: -5235291317615495786 wordsTotal: 28660 bestPositions: 16086406480920590 rankingScore: 2.925402537303508 urlQuality: -4.5
score
bm25-main: 15.357860636183052
bm25-flags: 12.008240625985772
verbatim: 30.598421096801758
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -5.333333333333333
rankingBonus: 0.0
topologyBonus: 1.9459101490553132
temporalBias: 0.0
flagsPenalty: 0.0
doc
docId: 9079259116595263749
combinedId: 2267816343813
7369972919142073489:solid
flags
rawEncoded: 67
Title: true
Subjects: true
UrlPath: true
positions
all: 2,7,291,315,366,410,890,930,1202,1234,1249,1547,1565,1733,1736,1744,1787,1799,1804,1844,1951,2110,2331,2355,2366,2605,2698,2702,2760,2832,2843,2848,2894,3017,4056,4599,4717,4721,4725
title: 2
body: 7,291,315,366,410,890,930,1202,1234,1249,1547,1565,1733,1736,1744,1787,1799,1804,1844,1951,2110,2331,2355,2366,2605,2698,2702,2760,2832,2843,2848,2894,3017,4056,4599
externalLinkText: 4717,4721,4725
verbatim
title: true
body: true
external_linktext: true
-2991778176760378980:platonic
flags
rawEncoded: 7
Title: true
Subjects: true
NamesWords: true
positions
all: 1,6,61,97,147,177,251,314,372,503,561,627,688,779,889,929,984,1190,1392,1546,1683,1743,1798,1834,1870,2109,2184,2250,2354,2365,2567,2604,2670,2697,2701,2759,2831,2980,3001,3085,3206,3233,3281,3577,3583,3613,3628,3712,3807,4016,4035,4042,4217,4234,4252,4451,4505,4537,4598,4652,4679,4682,4688,4692,4696,4700,4704,4708,4712,4716,4720,4724,4734
title: 1
heading: 3712
body: 6,61,97,147,177,251,314,372,503,561,627,688,779,889,929,984,1190,1392,1546,1683,1743,1798,1834,1870,2109,2184,2250,2354,2365,2567,2604,2670,2697,2701,2759,2831,2980,3001,3085,3206,3233,3281,3577,3583,3613,3628,3807,4016,4035,4042,4217,4234,4252,4451,4505,4537,4598,4652
externalLinkText: 4679,4682,4688,4692,4696,4700,4704,4708,4712,4716,4720,4724,4734
verbatim
title: true
body: true
external_linktext: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 2
Subjects: true
verbatim
title: true
body: true
external_linktext: true
Platonic Solid -- from Wolfram MathWorld
https://mathworld.wolfram.com/PlatonicSolid.html
The Platonic solids, also called the regular solids or regular polyhedra, are with equivalent faces composed of congruent There are exactly five such solids (Steinhaus 1999, pp. 252-256 the and as was proved by Euclid in the last proposition of the The Pl
dataHash: -3325870475047636570 wordsTotal: 11600 bestPositions: 137678028806 rankingScore: 3.3358344671067846 urlQuality: -10.91487979888916
score
bm25-main: 12.58007103569943
bm25-flags: 9.982730873256815
verbatim: 30.375276565551758
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -13.333333333333332
rankingBonus: 2.08
topologyBonus: 2.3978952727983707
temporalBias: 0.0
flagsPenalty: -5.0
doc
docId: 1585272347818983979
combinedId: 5278984569387
7369972919142073489:solid
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 2,7,387,445,475,482,486,493,544,545,572,592,625,652,655,690,698,731,734,738,1276,1402,1424
title: 2
heading: 7
body: 387,445,475,482,486,493,544,545,572,592,625,652,655,690,698,731,734,738,1276,1402
externalLinkText: 1424
verbatim
title: true
heading: true
body: true
external_linktext: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,6,9,50,72,78,172,323,334,413,417,485,538,590,614,651,689,723,730,737,859,935,952,1070,1108,1135,1154,1289,1343,1401,1423,1427,1431
title: 1
heading: 6
body: 9,50,72,78,172,323,334,413,417,485,538,590,614,651,689,723,730,737,859,935,952,1070,1108,1135,1154,1289,1343,1401
externalLinkText: 1423,1427,1431
verbatim
title: true
heading: true
body: true
external_linktext: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 5
Title: true
NamesWords: true
verbatim
title: true
heading: true
body: true
external_linktext: true
Platonic solid | Platonic Realms
https://platonicrealms.com/encyclopedia/Platonic-solid
The so-called Platonic Solids are convex regular polyhedra Polyhedra” is a Greek word meaning “many faces There are five of these, and they are characterized by the fact that each face is a regular that is, a straight-sided figure with equal sides and equ
dataHash: -5347878974858570082 wordsTotal: 7127 bestPositions: 524298 rankingScore: 3.358846317395832 urlQuality: -6.164409637451172
score
bm25-main: 10.545419986203749
bm25-flags: 10.030826640944989
verbatim: 19.295835494995117
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -0.4
rankingBonus: 0.0
topologyBonus: 4.2626798770413155
temporalBias: 0.0
flagsPenalty: 0.0
doc
docId: 9079271997866770470
combinedId: 15149087850534
7369972919142073489:solid
flags
rawEncoded: 65
Title: true
UrlPath: true
positions
all: 2,10,178,287,389
title: 2
heading: 10
body: 178,287,389
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 21
Title: true
NamesWords: true
Site: true
positions
all: 1,3,9,13,112,388,435,529,608,712,747
title: 1,3
heading: 9
body: 13,112,388,435,529,608,712,747
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
heading: true
body: true
Sixth Platonic solid
https://math.stackexchange.com/questions/298937
Sixth Platonic solid A Sixth Platonic solid? [1] Wouldn't gluing a tetrahedron's one triangle to a another tetrahedron's triangle make a platonic solid ? See the picture to see clearly what I mean. Tetrahedron stacked one on each makes an another solid wi
dataHash: -9132024292852965240 wordsTotal: 128 bestPositions: 302 rankingScore: 3.417517337651659 urlQuality: -10.0
score
bm25-main: 12.962561865426002
bm25-flags: 9.148221705603207
verbatim: 19.80666160583496
proximity: 0.0
firstPosition: 2.886751345948129
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: -2.0
qualityPenalty: -0.6666666666666666
rankingBonus: 1.27
topologyBonus: 0.0
temporalBias: 0.0
flagsPenalty: -2.0
doc
docId: 4611693661791550354
combinedId: 7643364162450
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 3,6,10,26,44,80,92
title: 3
heading: 10
body: 6,26,44,80,92
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 2,5,9,25,79
title: 2
heading: 9
body: 5,25,79
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 0
verbatim
title: true
heading: true
body: true
Platonic Solid
http://utter.chaos.org.uk/~eddy/math/platosolid.html
The platonic solids are regular bounded bodies, with plane surfaces and straight edges, whose faces are all the same, edges are all the same and corners are all the same. So if you've studied the details of one face, one edge and one vertex, you know all
dataHash: -5386164241880418674 wordsTotal: 23452 bestPositions: 4467841826818 rankingScore: 3.501947742440352 urlQuality: -0.28171446919441223
score
bm25-main: 8.402081920827744
bm25-flags: 10.541938308478226
verbatim: 19.988983154296875
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: 0.0
rankingBonus: 0.0
topologyBonus: 1.791759469228055
temporalBias: 0.0
flagsPenalty: -5.0
doc
docId: 9079518678441001219
combinedId: 261829662081283
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 2,4,471,906,1039,1297,1769
title: 2
heading: 4
body: 471,906,1039,1297,1769
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,3,6,470,905,1166,1296,1768
title: 1
heading: 3
body: 6,470,905,1166,1296,1768
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
heading: true
body: true
Platonic Solid
http://www.chaos.org.uk/~eddy/math/platosolid.html
The platonic solids are regular bounded bodies, with plane surfaces and straight edges, whose faces are all the same, edges are all the same and corners are all the same. So if you've studied the details of one face, one edge and one vertex, you know all
dataHash: -5386164241880419186 wordsTotal: 23452 bestPositions: 4467841826818 rankingScore: 3.5199068255429573 urlQuality: -0.28171446919441223
score
bm25-main: 8.623144687800734
bm25-flags: 9.878441350183182
verbatim: 19.988983154296875
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: 0.0
rankingBonus: 0.0
topologyBonus: 1.791759469228055
temporalBias: 0.0
flagsPenalty: -5.0
doc
docId: 9079295459259842826
combinedId: 38610480922890
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 2,4,471,909,1042,1300,1772
title: 2
heading: 4
body: 471,909,1042,1300,1772
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,3,6,470,908,1169,1299,1771
title: 1
heading: 3
body: 6,470,908,1169,1299,1771
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
heading: true
body: true
Platonic Solid & Sacred Geometry Essences - Vibrational Essences made from Platonic Solid and Sacred Geometric Shapes
https://www.crystalherbs.com/essences/platonic-solids-essences.asp
The Platonic Solid Sacred Geometry Essences are powerful reminders to our energetic system of their original matrix or blueprint. Working at a subtle energetic level these Essences help to encourage restoration of order and balance within our energetic bl
dataHash: -3077726093753624682 wordsTotal: 10602 bestPositions: 1542466794 rankingScore: 3.5543385503555514 urlQuality: -12.905095100402832
score
bm25-main: 12.136962778502356
bm25-flags: 7.665113525206101
verbatim: 22.32793617248535
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -0.8
rankingBonus: 0.0
topologyBonus: 1.9459101490553132
temporalBias: 0.0
flagsPenalty: -10.0
doc
docId: 9079476449584349228
combinedId: 219600805429292
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 2,11,29,42,55,61,102,128,174,416,481,485,525,565,621,640,652,673,780,787,841,956
title: 2,11
heading: 29,42,55,128,481,652,780,841
body: 61,102,174,416,485,525,565,621,640,673,787,956
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,10,28,41,54,60,101,127,173,415,480,484,524,564,620,639,651,672,707,779,786,840,955
title: 1,10
heading: 28,41,54,127,480,651,779,840
body: 60,101,173,415,484,524,564,620,639,672,707,786,955
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 2
Subjects: true
verbatim
title: true
heading: true
body: true
Check if a 3D point lies inside a 3D platonic solid?
https://www.stackoverflow.com/questions/34379859
Check if a 3D point lies inside a 3D platonic solid? Are there any known methods for quickly and efficiently determining if a 3D point lies within a platonic volume of a known size? This seems easy enough to do with a cube (hexahedron) or a circle (ellips
dataHash: -3223299645646772510 wordsTotal: 128 bestPositions: 302006296 rankingScore: 3.603671690576305 urlQuality: -10.0
score
bm25-main: 14.825988425773085
bm25-flags: 9.948246150590007
verbatim: 14.890371322631836
proximity: 0.0
firstPosition: 1.5075567228888183
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: -2.0
qualityPenalty: -0.6666666666666666
rankingBonus: 0.0
topologyBonus: 0.0
temporalBias: 0.0
flagsPenalty: -2.0
doc
docId: 9079282970711047854
combinedId: 26121932127918
7369972919142073489:solid
flags
rawEncoded: 3
Title: true
Subjects: true
positions
all: 11,22,113,210,213,338,378,650,828,868
title: 11
body: 22,113,210,213,338,378,650,828,868
verbatim
title: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 1
Title: true
positions
all: 10,21,40,209,588,649,827
title: 10
body: 21,40,209,588,649,827
verbatim
title: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 3
Title: true
Subjects: true
verbatim
title: true
body: true
Platonic solid molds / Subtle Energy Weapons and Tools / Loohan Forums
https://forum.loohan.com/viewtopic.php?id=246
This bulletin board is associated with the website and its Anyone can read; just hit the Index tab. Permission is required to post. No agents need apply.Posts in the wrong category will be relocated.New registrants: if you try to register you will get a m
dataHash: -5491879949167234942 wordsTotal: 2985 bestPositions: 4063234 rankingScore: 3.6051188713174493 urlQuality: -2.4820353984832764
score
bm25-main: 11.537029238204113
bm25-flags: 9.927234038037414
verbatim: 16.17805290222168
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -2.6666666666666665
rankingBonus: 1.85
topologyBonus: 1.0986122886681098
temporalBias: 0.0
flagsPenalty: -5.0
doc
docId: 2450412343440441397
combinedId: 454146150891573
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 2,296,321,352,386,436,460
title: 2
heading: 296,321,352,386,436,460
verbatim
title: true
heading: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,295,320,351,385,435,459
title: 1
heading: 295,320,351,385,435,459
verbatim
title: true
heading: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
heading: true
How to design/shape a polyhedron to be nearly spherically symmetrical, but not a platonic solid?
https://math.stackexchange.com/questions/1396485
How to design/shape a polyhedron to be nearly spherically symmetrical, but not a platonic solid? There are only 5 platonic solids, but take a look at these images: How are these things designed? How are they shaped? It looks to me like those hexagons are
dataHash: -2895666776547003209 wordsTotal: 128 bestPositions: 787496 rankingScore: 3.6057818153233807 urlQuality: -10.0
score
bm25-main: 14.662282623096088
bm25-flags: 9.148221705603207
verbatim: 15.04452133178711
proximity: 0.0
firstPosition: 1.2909944487358054
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: -2.0
qualityPenalty: -0.6666666666666666
rankingBonus: 1.27
topologyBonus: 0.0
temporalBias: 0.0
flagsPenalty: -2.0
doc
docId: 4611693661791879790
combinedId: 7643364491886
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 15,30,112,134,340,359,383
title: 15
body: 30,112,134,340,359,383
verbatim
title: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 1
Title: true
positions
all: 14,29,35,111,339,358,382
title: 14
body: 29,35,111,339,358,382
verbatim
title: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 0
verbatim
title: true
body: true