Query Debug Service


Specs

Compiled Query( platonic solid | platonic_solid )
Search Terms Include platonic solid
Search Terms Exclude
Search Terms Advice
Search Terms Priority
Phrase Constraints 2 [platonic, solid] -1896444796 Full[terms=[platonic, solid]]

Results

Platonic Solid -- from Wolfram MathWorld
https://mathworld.wolfram.com/PlatonicSolid.html

The Platonic solids, also called the regular solids or regular polyhedra, are with equivalent faces composed of congruent . There are exactly five such solids (Steinhaus 1999, pp. 252-256): the , and , as was proved by Euclid in the last proposition of th

dataHash: -3325905676599594074 wordsTotal: 11600 bestPositions: 137678028806 rankingScore: 3.026645759017878 urlQuality: -4.0 features: 142147586
score
bm25-main: 14.582502484568568
bm25-flags: 11.264609795429203
verbatim: 28.662960052490234
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -5.333333333333333
rankingBonus: 2.11
topologyBonus: 4.23410650459726
temporalBias: 0.0
flagsPenalty: -5.0
doc
docId: 1585272347818984487
combinedId: 5278984569895
7369972919142073489:solid
flags
rawEncoded: 39
Title: true
Subjects: true
NamesWords: true
SiteAdjacent: true
positions
all: 2,7,388,446,476,483,487,494,545,546,573,593,626,653,656,691,699,732,735,739,1277,1403,1440,1444
title: 2
heading: 7
body: 388,446,476,483,487,494,545,546,573,593,626,653,656,691,699,732,735,739,1277,1403
externalLinkText: 1440,1444
verbatim
title: true
heading: true
body: true
external_linktext: true
-2991778176760378980:platonic
flags
rawEncoded: 7
Title: true
Subjects: true
NamesWords: true
positions
all: 1,6,9,51,73,79,173,324,335,414,418,486,539,591,615,652,690,724,731,738,860,936,953,1071,1109,1136,1155,1290,1344,1402,1424,1428,1432,1439,1443
title: 1
heading: 6
body: 9,51,73,79,173,324,335,414,418,486,539,591,615,652,690,724,731,738,860,936,953,1071,1109,1136,1155,1290,1344,1402
externalLinkText: 1424,1428,1432,1439,1443
verbatim
title: true
heading: true
body: true
external_linktext: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 7
Title: true
Subjects: true
NamesWords: true
verbatim
title: true
heading: true
body: true
external_linktext: true
Platonic solid
https://en.wikipedia.org/wiki/Platonic_solid

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent)

dataHash: -5235291318420802170 wordsTotal: 29206 bestPositions: 17212305851023382 rankingScore: 3.0270708597228926 urlQuality: -4.5 features: 10
score
bm25-main: 12.843169241637401
bm25-flags: 12.805041197126764
verbatim: 24.934894561767578
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -5.333333333333333
rankingBonus: 0.0
topologyBonus: 4.927253685157205
temporalBias: 0.0
flagsPenalty: 0.0
doc
docId: 9079259116590155174
combinedId: 2267811235238
7369972919142073489:solid
flags
rawEncoded: 71
Title: true
Subjects: true
NamesWords: true
UrlPath: true
positions
all: 2,7,311,335,386,430,913,953,1221,1251,1266,1561,1579,1729,1732,1740,1783,1795,1800,1840,1943,2102,2323,2344,2355,2594,2680,2684,2742,2814,2825,2830,2876,2997,4093,4635,4749,4806,4810,4814,4818
title: 2
body: 7,311,335,386,430,913,953,1221,1251,1266,1561,1579,1729,1732,1740,1783,1795,1800,1840,1943,2102,2323,2344,2355,2594,2680,2684,2742,2814,2825,2830,2876,2997,4093,4635
externalLinkText: 4749,4806,4810,4814,4818
verbatim
title: true
body: true
external_linktext: true
-2991778176760378980:platonic
flags
rawEncoded: 71
Title: true
Subjects: true
NamesWords: true
UrlPath: true
positions
all: 1,6,82,117,167,197,271,334,392,523,581,647,706,804,912,952,1007,1209,1409,1560,1679,1739,1794,1830,1862,2101,2176,2242,2343,2354,2556,2593,2657,2679,2683,2741,2813,2960,2981,3065,3186,3213,3261,3551,3557,3587,3647,3780,3846,4055,4072,4079,4250,4267,4285,4479,4537,4568,4634,4688,4748,4753,4759,4765,4769,4773,4777,4781,4785,4789,4793,4797,4801,4805,4809,4813,4817,4826,4830
title: 1
body: 6,82,117,167,197,271,334,392,523,581,647,706,804,912,952,1007,1209,1409,1560,1679,1739,1794,1830,1862,2101,2176,2242,2343,2354,2556,2593,2657,2679,2683,2741,2813,2960,2981,3065,3186,3213,3261,3551,3557,3587,3647,3780,3846,4055,4072,4079,4250,4267,4285,4479,4537,4568,4634,4688
externalLinkText: 4748,4753,4759,4765,4769,4773,4777,4781,4785,4789,4793,4797,4801,4805,4809,4813,4817,4826,4830
verbatim
title: true
body: true
external_linktext: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 7
Title: true
Subjects: true
NamesWords: true
verbatim
title: true
body: true
external_linktext: true
Platonic solid - Knowino
https://www.theochem.ru.nl/~pwormer/Knowino/knowino.org/wiki/Platonic_solid.html

The Platonic solids (named after the Greek philosopher ) are a family of five convex which exhibit a particularly high . They can be characterized by the following two properties: All its sides (faces) are regular polygons of the same shape, and the same

dataHash: -619099775226989126 wordsTotal: 4122 bestPositions: 1048582 rankingScore: 3.235507710243695 urlQuality: 0.0 features: 1073741826
score
bm25-main: 12.443737288525378
bm25-flags: 11.29502274580183
verbatim: 19.583518981933594
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: 0.0
rankingBonus: 0.0
topologyBonus: 0.0
temporalBias: 0.0
flagsPenalty: 2.0
doc
docId: 9079290730769289192
combinedId: 33881990369256
7369972919142073489:solid
flags
rawEncoded: 65
Title: true
UrlPath: true
positions
all: 2,5,419,427
title: 2
heading: 5
body: 419,427
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 71
Title: true
Subjects: true
NamesWords: true
UrlPath: true
positions
all: 1,4,18,124,205,220,388,418,426,466
title: 1
heading: 4
body: 18,124,205,220,388,418,426,466
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 3
Title: true
Subjects: true
verbatim
title: true
heading: true
body: true
Platonic Solid & Sacred Geometry Essences - Vibrational Essences made from Platonic Solid and Sacred Geometric Shapes
https://www.crystalherbs.com/essences/platonic-solids-essences.asp

The Platonic Solid & Sacred Geometry Essences are powerful reminders to our energetic system of their original matrix or blueprint. Working at a subtle energetic level these Essences help to encourage restoration of order and balance within our energetic

dataHash: -3077726093753624682 wordsTotal: 10628 bestPositions: 1542462170 rankingScore: 3.261863407281829 urlQuality: -13.0 features: 590234
score
bm25-main: 14.07959947265788
bm25-flags: 11.70924024273094
verbatim: 22.32793617248535
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: -0.8666666666666667
rankingBonus: 0.0
topologyBonus: 1.9459101490553132
temporalBias: 0.0
flagsPenalty: -7.0
doc
docId: 9079476449584349238
combinedId: 219600805429302
7369972919142073489:solid
flags
rawEncoded: 67
Title: true
Subjects: true
UrlPath: true
positions
all: 2,11,24,37,50,56,97,123,169,411,476,480,520,560,616,635,647,668,775,782,836,951
title: 2,11
heading: 24,37,50,123,476,647,775,836
body: 56,97,169,411,480,520,560,616,635,668,782,951
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 71
Title: true
Subjects: true
NamesWords: true
UrlPath: true
positions
all: 1,10,23,36,49,55,96,122,168,410,475,479,519,559,615,634,646,667,702,774,781,835,950
title: 1,10
heading: 23,36,49,122,475,646,774,835
body: 55,96,168,410,479,519,559,615,634,667,702,781,950
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
heading: true
body: true
Platonic solid | Platonic Realms
https://platonicrealms.com/encyclopedia/Platonic-solid

The so-called Platonic Solids are convex regular polyhedra. “Polyhedra” is a Greek word meaning “many faces.” There are five of these, and they are characterized by the fact that each face is a regular , that is, a straight-sided figure with equal sides a

dataHash: -5347878974858570082 wordsTotal: 7127 bestPositions: 524298 rankingScore: 3.267402071397249 urlQuality: 0.0 features: 524290
score
bm25-main: 12.19884485466269
bm25-flags: 10.897841950665583
verbatim: 19.295835494995117
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: 0.0
rankingBonus: 0.0
topologyBonus: 5.545177444479562
temporalBias: 0.0
flagsPenalty: -5.0
doc
docId: 9079271997866770526
combinedId: 15149087850590
7369972919142073489:solid
flags
rawEncoded: 65
Title: true
UrlPath: true
positions
all: 2,10,178,287,389
title: 2
heading: 10
body: 178,287,389
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 69
Title: true
NamesWords: true
UrlPath: true
positions
all: 1,3,9,13,112,388,435,529,608,712,747
title: 1,3
heading: 9
body: 13,112,388,435,529,608,712,747
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 5
Title: true
NamesWords: true
verbatim
title: true
heading: true
body: true
Sixth Platonic solid
https://math.stackexchange.com/questions/298937

Sixth Platonic solid A Sixth Platonic solid? [1] Wouldn't gluing a tetrahedron's one triangle to a another tetrahedron's triangle make a platonic solid ? See the picture to see clearly what I mean. Tetrahedron stacked one on each makes an another solid wi

dataHash: -9132024292584529768 wordsTotal: 128 bestPositions: 302 rankingScore: 3.3782024251116685 urlQuality: -10.0 features: 10
score
bm25-main: 13.111087136732612
bm25-flags: 10.072022112706232
verbatim: 19.80666160583496
proximity: 0.0
firstPosition: 2.886751345948129
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: -2.0
qualityPenalty: -0.6666666666666666
rankingBonus: 1.27
topologyBonus: 0.0
temporalBias: 0.0
flagsPenalty: -2.0
doc
docId: 4611693661791550258
combinedId: 7643364162354
7369972919142073489:solid
flags
rawEncoded: 3
Title: true
Subjects: true
positions
all: 3,6,10,26,44,80,92
title: 3
heading: 10
body: 6,26,44,80,92
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 7
Title: true
Subjects: true
NamesWords: true
positions
all: 2,5,9,25,79
title: 2
heading: 9
body: 5,25,79
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
heading: true
body: true
Platonic solid molds / Subtle Energy Weapons and Tools / Loohan Forums
https://forum.loohan.com/viewtopic.php?id=246

This bulletin board is associated with the website and its Anyone can read; just hit the Index tab. Permission is required to post. No agents need apply.Posts in the wrong category will be relocated.New registrants: if you try to register you will get a m

dataHash: 3731494286727573634 wordsTotal: 2985 bestPositions: 4063234 rankingScore: 3.4126723599255686 urlQuality: 0.0 features: 1074266114
score
bm25-main: 13.458161789794426
bm25-flags: 10.65041932560494
verbatim: 16.17805290222168
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: 0.0
rankingBonus: 1.8
topologyBonus: 1.0986122886681098
temporalBias: 0.0
flagsPenalty: -5.0
doc
docId: 2594527531516297268
combinedId: 454146150891572
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 2,296,321,352,386,436,460
title: 2
heading: 296,321,352,386,436,460
verbatim
title: true
heading: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,295,320,351,385,435,459
title: 1
heading: 295,320,351,385,435,459
verbatim
title: true
heading: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
heading: true
Platonic Solid
http://www.chaos.org.uk/~eddy/math/platosolid.html

The platonic solids are regular bounded bodies, with plane surfaces and straight edges, whose faces are all the same, edges are all the same and corners are all the same. So if you've studied the details of one face, one edge and one vertex, you know all

dataHash: -5386164241880419186 wordsTotal: 23452 bestPositions: 4467841826818 rankingScore: 3.5098668197041274 urlQuality: 0.0 features: 1
score
bm25-main: 9.856349938357917
bm25-flags: 9.03973958297538
verbatim: 19.988983154296875
proximity: 0.0
firstPosition: 3.5355339059327373
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: 0.0
qualityPenalty: 0.0
rankingBonus: 0.0
topologyBonus: 1.6094379124341003
temporalBias: 0.0
flagsPenalty: -5.0
doc
docId: 9079295459259842867
combinedId: 38610480922931
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 2,4,471,909,1042,1300,1772
title: 2
heading: 4
body: 471,909,1042,1300,1772
verbatim
title: true
heading: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 5
Title: true
NamesWords: true
positions
all: 1,3,6,470,908,1169,1299,1771
title: 1
heading: 3
body: 6,470,908,1169,1299,1771
verbatim
title: true
heading: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
heading: true
body: true
How to design/shape a polyhedron to be nearly spherically symmetrical, but not a platonic solid?
https://math.stackexchange.com/questions/1396485

How to design/shape a polyhedron to be nearly spherically symmetrical, but not a platonic solid? There are only 5 platonic solids, but take a look at these images: How are these things designed? How are they shaped? It looks to me like those hexagons are

dataHash: -2895103826551671625 wordsTotal: 128 bestPositions: 787496 rankingScore: 3.53034263754646 urlQuality: -10.0 features: 10
score
bm25-main: 14.822338689117698
bm25-flags: 10.765435925374874
verbatim: 15.04452133178711
proximity: 0.0
firstPosition: 1.2909944487358054
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: -2.0
qualityPenalty: -0.6666666666666666
rankingBonus: 1.27
topologyBonus: 0.0
temporalBias: 0.0
flagsPenalty: -2.0
doc
docId: 4611693661791878478
combinedId: 7643364490574
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 15,30,112,135,341,360,384
title: 15
body: 30,112,135,341,360,384
verbatim
title: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 3
Title: true
Subjects: true
positions
all: 14,29,35,111,340,359,383
title: 14
body: 29,35,111,340,359,383
verbatim
title: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
body: true
Check if a 3D point lies inside a 3D platonic solid?
https://www.stackoverflow.com/questions/34379859

Check if a 3D point lies inside a 3D platonic solid? Are there any known methods for quickly and efficiently determining if a 3D point lies within a platonic volume of a known size? This seems easy enough to do with a cube (hexahedron) or a circle (ellips

dataHash: -3223299645915240734 wordsTotal: 128 bestPositions: 302006296 rankingScore: 3.5927919334143263 urlQuality: -10.0 features: 10
score
bm25-main: 14.9909375821205
bm25-flags: 10.039096720305142
verbatim: 14.890371322631836
proximity: 0.0
firstPosition: 1.5075567228888183
documentBonus
averageSentenceLengthPenalty: 0.0
documentLengthPenalty: -2.0
qualityPenalty: -0.6666666666666666
rankingBonus: 0.0
topologyBonus: 0.0
temporalBias: 0.0
flagsPenalty: -2.0
doc
docId: 9079282970711030084
combinedId: 26121932110148
7369972919142073489:solid
flags
rawEncoded: 1
Title: true
positions
all: 11,22,113,210,213,339,379,654,833,874
title: 11
body: 22,113,210,213,339,379,654,833,874
verbatim
title: true
body: true
-2991778176760378980:platonic
flags
rawEncoded: 1
Title: true
positions
all: 10,21,40,209,591,653,832
title: 10
body: 21,40,209,591,653,832
verbatim
title: true
body: true
-5871608438768358692:platonic_solid
flags
rawEncoded: 1
Title: true
verbatim
title: true
body: true